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Abstract

Linear programming versions of scme control problems on Markov
chains are derived, and are studied under conditions which occur iu typi-
cal rroblems which srise by discretizing continuous time snd state sys-
tems, or in discrete state rystems, Control interpretations of the dual
variables and simplex multipliers are given, The formulation allows the
treatment of 'state space' like constraints which cannot be handled con-
veniently with dynamic programming, The relation between dynamic programming
on Markov chains, and the deterministic discrete maximum principle is
explored, and some insight is c.,tained into the problem of singular sto-

chastic controls (with respect to a stochastic maximum principle),



1., Introduction

This paper is concerned with several problems occuring in the con-
trol of a Markov chain (X ]} on the state space (0y1,404,N) = 8, with trans-
ition probabilities pid(a), where a, a control, takes values in a set Uj.
State 0 is a desired target state and pbo(a) = 1; once in state 0, al-
ways in state 0., The terms u = (ul,...,uN), u, ¢ Uy, denotes a control
vector, I.e., if the control vector u 1is always used, and X, ® i, then
the value of a in piJ(a) is u(xn) = u,. Let 7 denote the first time

state 0 4is attained, k(i,a) the cost paid when the state is i and con-

u
i

Xb = i, and the control vector u is used, Then the cost is

trol u(xn) =u =aq is used, and E; the expectation operator given that

T=-1
V(ugi) = E‘i‘ gk(xn,u(xn)).

Define k(0,) = 0. Then
u 00
(1) V(usi) = E; (Z)',k(xn,u(xn)).

Define the column vectors V(u) = (V(u3l),...,V(usN)) and K(u) =
(k(l,ul),...,k(N,uN)).

Note that, if the N step transition probability pgg)(u) >0
for all i, then state O is attainable and V(u) exists.,

Define problem (Pl): Let U; contain a finite number of points

(which, for convenience, we assume are al,...,aq), or let the n+l dimensional



set (pil(ui)’""piN(Ui)’k(i’Ui)) be a convex polyhedron with extreme points

included in {(Pil(ar),...,pm(ar)’k(i,ar)), r s l,ooo,Q)o Assume (Al)'
(N
P10

pgg)(u) >0 for all i and some u, Find the control u = (ul,...,uN) which

)(u) >0 for all i and u, or (A2): k(i,a) >0 for all i,a and

minimizes V(u3i), i = 1,...,N. Define A

The assumption on U; can be weakened, although the form given

= min V(usi).
u

allows a relatively simple notation, Indeed any compact Ui is suitable

if the piJ(-) and k(¢) are continuous, The convex polyhedron assumption
is satisfied for problems which are obtained by discretizing continuous time
bang-bang problems, See the example,

In Section 2, a linear programming formulation of (Pl) will be
given, Linear programming (L.P.) versions of many types of dynamic program-
ming problems are well known (see, e.g., [3] - [5], [9]). Indeed, a L. P,
version of (Pl) was given by Derman [6]. The variables in the L.P, form
in [6] do not seem to have a simple physical interpretation, However, the
form here seems more natural and has a more natural dual, namely the dynamic

programming equations for (Pl)

N
vV, & Zpij(ar)vj + k(1,0 ), all i,r,

j=1

While experience indicates that the linear programming algorithm
(Simplex method) is generally inferior, in computational efficiency, to the
available dynamic programming iterative methods (for the type of problems
discussed here), it is of interest since it is an alternative formulation which

sheds further light on the Markov optimization problem and, in addition, the

two important reasons:




(a) There may be additional constraints on the probabilities
P[xn = i)} (Section 2), The dynamic programming is not directly applicable,
and the L.,P, formulation yields useful insights into the optimization prob-
lem, Indeed, it is often desirable or necessary to add such constraints
in Markov control problems, See Section 2 for example,

(b) The L.,P. formulation gives us insight into a form of a sto-
chastic maximum principle (Section %), and the singularity problem of the
stochastic maximum principle .

In Section %, which treats a finite tine Markov optimizati-.n prob-
lem, it is shown that the Holtzman form of the discrete maximum principle
[7] is equivalent to dynamic programming, in the absense of 'state spece!
constraints on the variables P[xn = i}, and that the control is often sin-
gular (in the sense that minimization of “re relevant Hamiltonian yields
no information on the form of the control) in the presence of such con-
gtraints, a situation which often occurs with deterministic systems with

state space constraints,

2, Linear Programming and the Optimal Control Problem,

2.1, No 'state space' constraints. First a form of (Pl) will be

treated, Let R(u) = [pij(ui)’ i,j = 1,...,N} denote the reduced transition
matrix (state O omitted) corresponding to control vector u = (ul,...,uN).

The following known results {2] will be used below.

Lemma 1. Assume (Al). Then state O is sttained w.p.l. and V(u) is the

unique vector solution to the vector equation

(2) C = R(u)C + K(u).



If k(i,a) >0 and (2) has a finite solution, then p(N)(u) >0

i0
and ng)(“) <1 as n=—-» and C = V(u), Under (A2), there is at least

one suth u,

Under (Al) or (A2) there is an optimal control, and the least

cost vector V satisfie_g

(3) V = min[R(u)V + K(v}].
u

Remark, The property pi‘o(u) >0 for all i assures that state 0O 1is

ultimately attained with a corresponding finite uverage cost,

Lemma 2, (Howard's iteration in policy space procedure)., Assume (Al) or

(A2). Choose u® s0 that V(u®) exists., Assume u is given ana V(un)

exists., Choose uml a_sthe minimiziﬂg vector ui_n

(4) min[R(u)V(un) + K(u)] = R( un+l)V(un) + K( un+l)
u

then V(un)¢ V = min V(u).
u

Remark. The method in Lemma 2 is mentioned because of its relaticn cto the

simplex method (see below). For many problems, it seems to converge slower

than the various backward iteration methods, e.g.

¢ = min[R(w)C® + K(u)].
u

See [1] for a discussion of a better iterative method,

2,1.1., Introduction of Randomized Controls., For purposes of the L.P.




formulation and its generalizations, its useful to rewrite (Pl) in an equi-
valent form. We suppose that U, = (al,...,aq) and allow randomized contrels,
That is to say that, at each time, the sctual control action which is used is
randomly selected among the Qppeee,@s the probability which governs the

choice (or, equivalently, the control law) depends on the current state,

Thus, the control u is replaced by a sequence Yy of Nq elements,

re (Ti:---:?h), L is a q vector

Yi - (Yil)ooo,riq), TR l’ooo’N

j%lrij ” l) Yid 2 o’ TiJ - Hu(xn) - J | xn - i}

If Yij = 1 then the control at state 1 is pure and u(Xn) = aj, when

X, * i, Under the control law Yy, the transition probabilities take values

PIX, = 5 | X =4, dav v used) =Bf(X, =) =py(n,) =
% Py (%) Ty e

We now write V(y) and E{ and PI instead of V(u), Er, P?. It turns

out, of course, that the L.,P., formulation does give a non-random control.
With this randomization, finiteness of U1 = U is equivalent to the sets
8 = (pil(Ui),...,piN(Ui),k(i,Ui)) being convex polyhedrons,

Let M denote the average number of times that «, is actually

i J

q
used when state 1 is visited., Write M, = LM, ., and suppose that X
Py ¥ 0

is random with P[xo er] = K., where u = (ul,...,uN) is a column vector. Write

gf(xn = j} = % pig)(vﬁui = P(xn = jl control y used,

initial distribution = u}.



2.1,2, The Constraints for L.P. By definition,

M = P*(xn = i)u, = Z‘. P"{xn . 1)
l'

2 T
“ . nE;PL[xn+l

My e LEIX, =4, uX) = o,

Ty

* of
5 nE;PL{Xn "8 UE) GJ]
From the relation
P’:{xml .5 Z pji(ak)Pr{xn = J, u(X)) =,
e obtain

(3) LM, =M

£ =M = u o+ k):;::ai(ozk)mjk, M, 20, 1=1,...,N
s dJ

or, equivalently,

(6) “i - Z[ pji(ak) + jk.

Define the transition matrix (again state O deleted) R(y) =

[pdi(rﬁ); Jyi = 1,...,N}. Now Yik = jk/Md’ and an alternate form to

(5) is

I

Ponics



(7) s S $u 33[ Z Py () 7y My

=y 4 ‘zj‘,r.ji(rd)u s 4= ool

In vector notation (where M is the column vector (Ml,...,MN), and prime °

is transpose)

(8) M=pu + R (YN, My, = 0.

We now address ourselves to the uniqueness of the solution of (7),
(8), Unless an obtained solution of (8) is truly the vector of average oc-
cupancy times, the L.,P., formulation may not give the correct solution, The
matrix R(y) 1is said to be a contraction if its eigenvalues lie strictly
ingide the unit circle, This is equivalent to ([1]) the property g:p§
for all i, which, in turn, is equivalent to RN(Y) being a contrag;}on in

N)
] (u) <1

the sense that max|Ci| < max|Di| in C = R'(Y)D. These properties are
i

equivalent to Rn(u) =20 as n = o,

Lemma 2, Suppose R(y) is given, Assume either (i); (Al), or (ii);

Hy >0 .1‘_01_: g_l_l_ i, Define the cost

(9) Z = i’zj Mijk(ipaj) = fMik(i’ Yi)

k(i,7,) = 33 v sk(1,0y)

Then there is a vnique non-negative solution (10) to (8),




(10) M= Z(R(y)%, RYV =1,
n=0

and this solution is the vector of mean occupancy times, Furthermore (9)
an

o

e written as (11).

(11) z = u' IRY(PVK(Y), =2 uV(13)
n=0 i

where V(y3i) = cost for (Pl) corresponding to randomized control y and

K(y) is the column vector

K(Y) - (k(l’ rl),OOO)k(N’TN))O

If uy >C for all i, then any control law (rl,...,rN), or
equivalently, any (Mij] which minimizes (9) subject to (8), also solves

(Pl), and conversely, In particular min z = f“ivi' The converse state-

ment 1_s true even g some g_t_‘ the My = 0.

Proofs Only the uniquenrss of the sol.otion to (8) will be shown, for the

rest follows easily from this, Any solution of (8) 4s of the form

(12) M= lim (RY(1)"™M + T (R'(1) %
n n=0

Thus, we need only show that R(y) or RN( Y) are contractions in the

appropriate senses,




Assume (i), The eigenvalues of all R(u) are interior to the unit
cirele for all pure contrels u, and there are only a finite number of pos-

sibi’ities for u, Any R(Y) has the form

R(Y) = ZaR(ub), A 20, LA =1,
i i
where ui ranges over all possible pure control vectors with values in
U, XeeoeX U,. But, since R(Y) is a non-negative matrix, the eigenvalue

1 N
e¢(R(A)) with largest absolute value is real and positive and

e(R(A)) 5 5 ).ie(R(ui)) %1
i

thus proving uniqueness under (i).

Assume (ii), If u; >0 for all i, and R*(y) does not tend to
the zero matrix, then (12) implies that some My is infinite, a contradic-

tion. Q.E.D.

Remark., Lemma 2 can be strengthened under (A2), First we make
the following observation, Let Wy >0, i=1...,r with all other kg =0,
Let Sl(r) denote the states 1,...,r, all those states connected to
l,...,r and all transient states, Let 82(1) denote the remaining states
(a positive recurrent class), A modification of the proof under (A2) yields
that Epgg)(r) <w for 1ic¢ sl(r) and all j. Hence for i e Sl( Y,

n=0

(n)(r) -0 and the form (12) implies that the componeat M

pij 1 of the solu-
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tion to (8) is the mean occupancy time, For 1 ¢ §,, (12) indicates that
the component M1 of the solution to (8) can be larger than the mean oc-
cupancy time, This turns out to be unimportant under (A2),

We also note that, if My >C for all i, and 2z < =, and
k(i,aj) 2 ¢ >0, then RN(r) must be a ceontraction, for otherwise we would

have 2z = o,

Lemma 5, Assume (A2). Let r be optimal, Then the M, solving (8) are

the mean occupancy times, M; =0 for i ¢ 8,(r), and pij(r) =0 for 1ic¢
n

8,(7), J € 8,(v), Also p(ij)(r) -0 as n-w for i€ 5;(r). Thus (10)

and (11) hold,

Proof: All states in Sl(r) are transient, and non-transient states (i.e.,

those in S2(r)) cannot be reached ‘rom states in Sl(r), for otherwise the

representation

o0
z = (Lim MR (VK(Y) + w ZRY(DK(Y),
n 0
and the positivity of k(i,yi), imply that 2z = 4o, Let 1i ¢ Sa(r). Then

M; 1is not effected by the values of M,, J ¢ Sl(yj, since pji(wj = 0,

Since k(i,Yi) >0 and y is optimal, the form (9) implies that M

§ =

Thus M'Rn(yﬁ -0 as n -, proving (10) and (il). Q.E.D.
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Remark on the equality constraint (6), If k(i,aJ) 2 0, the equal-

ity constraint (6) (or (8)) can be replaced by

(6') M, - Zz in(az)M“ T Hg, My, %O
)
or
(€") e Tt B JZzpdi(al)sz.
)

We will give tine proof for all My >0 and show only that the minimum of
(9) under (6') is not less than the minimum of (9) under (6) - which, in
turn, implies that the optimal solution will give an equality in (6'),
First observe that (6') implies that M; 2 1y >0, Let [M&j]
solve (6'), Define, again, Yy ® Mij/Mi’ and let R(y) be the corresponding

transition matrix.(6") can be written as

M2y + R'Y(YMN,

which implies that (R'(r))N is a contraction, Thus there is a unique

non-negative solution to

M= u+ RN,

and



M-M 2 R'(y)(M-M)
which (since (R'(y)) - 0) implies that
Mz M
Then the set (ﬁi,j = ﬁi r,ji] satisfies
~ij ij*
Since k(i,ad) 20,

Z= X k(i,a

WM, ., s I k(i,o
i, J71J

™, .
..

2.1.3, The Dual form for L.P. Write the system (7) in the

vector form
we X, 2= BN
where M = (Mll’Ml.?.""’Mlq’MEl""’MNq) is the column vector of I.P.

variables and ¥ and 4 are the N X Nqg matrix and Nq row vector,

(12a) and (13b), resp.




-pll(al) +1,000, -pll(aq)*l’ -p21(al)’ ey -p21(aq)’ sy -le(al) sy "le(Qq)

-

‘pm(al) yrry 'plz(aq) 'pge(al) 4‘1’ teey -pez(aq)*l, teey ‘pNe(al) yrrry 'pN(-\(O,))

'PlN(al)’°°'t'p1N(aq)) ’ 'pNN(al)*l""’-pNK(J%\+;°

(15v) k(l,al),...,k(l,aq), k(2,al),...,k(2,aq),...,k(N,al),...,k(N,aq)

Let C = (cl""’cN) be the column vector of dual variables, By

the usual rules, [8, p. 127], the dual form of the L.P. is

(14) maximize 2, M C

" i

with constraint
(15) ¥'C = DB,

and the Ci are unconstrained in sign.

Writing out (15) in detail and rearranging some terms gives the

Ng inequalities

N
(16) c, s Jgipid(ar)cj + k(i,0))

((1,r*P) inequality) 1 = 1,...,N; r = 1,...,q.



1k

It will be shown below that, if all My > 0, then for any optimal
solution, M, #0 for at most one j (depending on 1), and M, % u, >O0.
Denote thic ) by r(i) and let u, denote ar(i)’ Let C denote the
optimal dual vector, By the complementary slackness theorem of L.P.,

there is equality in (16) for the (i,r(i))th lines, Thus

N
17) C, = min[ X p, . (a)C, + k(i,a)]
: Sy e 9

N
- Jg'.:l.pi‘j(ui)c.j + k\i,ui)

where « ranges over U = (al,...,aq), which are precisely the dynamic

programring equations (3). Thus, for the optimal dual variable

C =V, = min V(u;i)o

u

i i

The L.P. dual requires a maximization (14), but, any vector C
which actually satisfies (16) is not a true cost vector (for some control
u), unless it is the optimal cost vector,

If not all u, >0, but k(i,aj) 2 €>0, some of the optimal M,
will equal zero (see Lemma » and the remark preceeding it), Let M, >0

i
and Mis > 0., Then, by the complementary slackness theorem, for all Qy 5
N N
' =
(17*) Cy inpiJ(“s)ca + k(i,a) s jE',lpij(at)cJ + k(i,04).

Furthermore, by taking suitable linear combinations in (17') (7y = optimal
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control law)

N N
(17™) c, = & piJ(Yi)cJ + k(1,7,) s z pij(at)cj + k(1,0,)
J=1 J=1
Since pid(yi) =0 for 1 ¢ Sl(r), J e SQ(Y), and Sl(T) are transient,
we conclude that Ci = min V(y3i) = Vi, and that there is a non-random
Y
optimal control (let Sl(r) = 1l,...,,S, and Mir(i) >0 for 419 1,i0:,33

then (ar(l)""’ar(s)) is an optimal control, and Sa(r) is never reached),

2,1,4, The Simplex Method and Iteration in Policy Space,

Theorem 1. Under (Al) or (A2), there is an optimal non-random control.

I.e., there is an admissible set [Mi which minimizes 2z, and for which

j}
Mij >0 for at most one j for each i, Iif My > 0, the basic solution at

each iteration of the simplex method satisfies MiJ >0 for only one

for each 1.

Proof: All assertions have already been proved, except the last, There are

at most N of the [Mij] which are non-zero at each iteration, Then M, 2

i
W >0, If M, >0, M, >0 for s # r, then MJ = 0 for some j, which
contradicts M.‘j 2 My > 0. Thus Mij >0 for one and only one j, for each 1,

at each iteration of the simplex method., Q.E.D.
Simplex Multipliers, Assume either (Al) or (A2) and also that,

under (A2), the simplex routine is initiated with a pure control u or a

random control y for which RN(u) or RN(r) is a contraction, Let
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A= [al,...,aM] be an N X M matrix with N <M and columns a;. Con-
sider the L.P, problem of minimizing c¢'x = z with constraint Ax = b,
where c' = (cl,...,cM). Let xil,...,xiN be the basic sclution at a

given iteration, Then([8), there are numbers (simplex multipliers)

nl,...,wN so that

(18) TT'a -0 -0’ n = l’ooo’N
1n 1n

Tl" = (TTl,...,TTN) = Irow VCCbOI‘.
Define q T

N
(19) m™a, =-¢C s LTaA -C ma.
LT RT AL "L BN

Let q; = max qd. Then the simplex algorithm chooses X, as the new entry
into the bagis. If all q = 0, the current basls is optimal.

Let u, >0 for all i, and let [Mij(i)’ i=1.,.,N) be the
basis at a glven iteration. Let v, = j(1)? and v = (vl,...,vN). For
our L.P, problem, the multiplier results iss there is a vector
(WPH.JN)-W so that

N
(20) LA -ngpid(vi) Ty - k(i,vy) =0, i=1,...,N

The new basis entry Mir is chosen as followss choose the i,r for which
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N
o Jgapij(ar)rj - k(i’ar) " Yy

is largest. At the optimal (optimal control = u = (“l""’ur))

N

N
(21) T, = :E.lp:'.d(\,x:l')w.j + k(1,)) = §ipij(ar)WJ + k(i,ar)

J
for all 1 and a,.

By (20) and Lemma 1 y Ty = V(v;1), the cost corresponding to
initial state i, Egn, (21) is merely the principle of optimality once
again, The method oi selecting the new basis variable is clearly a special
case of iteration in policy space (Lemma (2)), where only one control is
changed at a time, This was first observed by DeGhelly nek [9] for the
average cost per unit time problem., This observation suggests that the L.P.
algorithm is no better than algorithms which are available for the original

dynamic programming problem,

2,1.5. Elaboration of the Dual Form (14), (16).

Assume either (Al) or (A2) in trkis Section. If either
(i) U= Ui = (al,...,aq)
or

(ii) 8; = (pil(Ui)""’piN(Ui)’ k(i,Ui)) is a convex polyhedron

for each i,
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then (P1) has an L.P. form, with dual form (14), (16), It has already

been noted that (i) and (ii) are equivalent. Instead of finiteness of the
Ul’ suppose temporarily that (A))gpid(') and k(i,*) are continuous and

Uy is compact., 1If, in addition

(1i1) 8, 4is convex,

i
then the ger-ralized programming method (G.P.) cof Wolfe [8] can be used
to solve (Pl), and the dual of the G.P. is precisely (14), (16), where
ar ranges over the Ui'

Under (A3) alone, we can convexify the 8, by allowing ran-
domizations, and thus apply G.P, However, it is intererting to see by a
more direct argument, that the solution to (14) - (16) is also the solu-

tion to (Pl).

Theorem 2. Assume (A3) and eitner (Al) or (A2), Then there is a solution

to (Pl). The optimal cost vector V solves (1h4), (16')

(16') c, s JZpij(vi)CJ + k(1,7,), vy €U

C sR(V)C + K(v), v = (vl,...,vN).

Proof: 1°. The first statement is known to be true [2]. By the principle

of optiimality, the optimal control u = (ul,...,uN) and least cost satisfy
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V = R(u)V + K(u) s R(V)V + K(v), all v, €U, vs= (VypeeeyVy)e

Thus V satisfies (16').

2% If vectors A,B satisfy (16'), then max(A,B) (take the

max component by component) satisfies (16') by the following argument,

Ay 8 szij(a)AJ + k(i,a)
all a,i
B, § ?pid(a)BJ + k(i,0)

max(Ai,Bi) H ﬁ.‘.pij(a) max(AJ,BJ) + k(i,a).

39, Next, it is shown that all vectors W satisfying (1€') also
satisfy W sV, This implies that the set of vectors satisfying (16')
is a lattice with maximal element V, and proves the theorem, Let U sat-
isfy (16') with Uy >V;. Then W = max(U,V) satisfies (16'). Write

>0 for 1=1,.. ,r and € =0 for s >r. Then, using the

W, =V, +€

§ e, A
fact V = V(u),

?pi.j(ui)w.j v k(i,ui) = §. p:‘.‘j(ui)vJ . k(i,ui) + ?p:lj(ui)e,j

>
= /
s 8 ? Pyjlugley B Wy =V e,
and

r
Ep“(ui)eJ 2e, 1=1...,r
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which implies that Z pig )(u) =1 for all n, This contradicts the fact
J=1
that R%(u) 0. Thus W =V, Q.E.D,

2,2, Additional constraints, In addition to (7) eupvose that we require

satisfaction of the inequality constraints

(22) T e

irMir ’ 55' 8= 1oyt
i, r

isN,
th

Let the dual variables be Cl,...,CN, CN¢1,...,C 2 where the C

N+ - i
cor-esponds to the 1i°" equality in (7) and Cyyq COTTesponds to the i
inequality in (22). Then, for the dual problem, the C,, i & N, are un-
constrained in sign (see rules in [8)], p, 125-7) and the Chad?
0 <is= g, are non-negative, The dual equations can Le written as

(23) c, § me(a )Cy + [ 2 + k(1,c.)]

13 N+r

8 -l,...,q; 1-1’000’N,

and we maximize

(24) Zw = Z 5 Cyat =

Suppose all Cysq B8re given. Thea (23), (24) is equivalent

to tI problem of computing the optimal control for the cost
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~ z r
k(i,a,) = !Eleiscmr + k(i,a,).

In many control applications, the eis 2 0, See example below. Then the

dual L.P. is, in o sense, equivalent to finding the optimal control for a
cost rate ﬁ(i,a) which weighs (positively) the constraint. I.e.,, suppose

g =1 and el =1, Then, we seek the control which minimizes L M, .k(i,a,)
)

subject to the mean time to absorbtion being no greater than 61, Then

K(1,a) = Cy,; + k(1,0).
Thus, the equivalent cost C = (Cy,...,Cp) is

o0
o u 3 u
(25) C; = [Ej Cy,, * time to absorbtion + E nZl-ok(xn,u(xn))].

If 61 2 0, the form (24) suggests that we want to find the

least weights CN+i’

fies the constraints (22). Note that the optimal controls for at most £

for which the control which minimizecs (25) also satis-

states may possibly be randomized, since the basic solutions of the primal

problem may have as many as N+f of the {Mij] non zero.

2,5, Example, To see how 'state space' constraints of the form (22)

mey appear, we consider a simple Markov chain problem which is a discretization

of a continuous time problem, Cecnsider the system ¥ = u+0f, where is

gt
white Gaussian noise and |u| £ 1, In It® equation form, the system is
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dxl = xadt

dx2 = udt + odz

where zy is a Wiener process., Suppose that we wish to drive Xy =

(xlt,xet) to the target line T in Figure 1, in minimum average time,
By the method in [1], an approximating Markov chain (xn] (whose state
space 1is the collection of Nodes in Fig. 1) can be obtained. Let h
denote the distance between nodes in Fig., 1, with h < 02, and let e,
denote the unit vector in the 1th coordinate direction. Then for x

on a node not on T, the transition probabilities of the Markov chain are

e
px,x+elh(u) = h|x2|/(0 +h|x2i) if X5 20
= 0
if Xy < 0
Px,x-elh(u) =0 if x, 20
= h|x |/(02+h|x 1) i x. <0
1\2 2 ) 2
2 2
px,x+e2h(u) = (0" +hu)/2(0"+n| x,| )

(0°-hu) /2(0”+h| x,| )

px,x-ezh(u)

k(x,u) = k(x) = h/(0"+h| x,] )

In order to solve the minimum average time to (the nodes on) T

problem for [xn], it is necessary to truncate the space, To do this we

Ladi b b sy ek B B R B
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fix an external boundary B as in Fig. 2, and assign transition probabili-
ties on B to be consistent with the internal dynamics in some way. Several
proceuures are possible, and, for our purposes, the exact proccdure 1s un-
important. Suppose only that, on the indicated segments of B, the process
can move in the directions of the arrows with given probabilities. Of
course, specification of an outerboundary may be part of the original prob-
lem statement,

Let us next consider some state spasce constraints., A reasonable
constraint (considering that the model may not be adequate for large |x|

any way) is

(i): Average time on boundary s 2, §'Mij s B,
i€B j=1
(1) denotes the average time on the boundary for the (xn] process., If
we wish an approximation to the original continuous time problem, with the
aiitional constraint that the average time the original process is on the
boundary B, we need to take into account the fact that a unit time for the
[Xn} process is not a unit time for the X, process. The details must
be omitted due to space limitations, and the reader is referred to [11}].

It will suffice to say that the weighted average

q
(31} £ & R 535
ieB i.j=l 1

-1

is required in lieu of (i) where a, = (02 v h|x2|), where x, is the

second component of the vector x at node 1i.
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In general, there may be a region @ which it is undesirable to

enter, and we can introduce

(iii): % M s
i(Q

For another type of example, suppose that fuel has an associated
cost. Note that the pij(u) are linear in the conurol u. Let B, =
P{u(Xn) =+ 1] X, = 1 3T H =~%, then the average (or actual) control
at state i 1is zero . Indeed, we can suppose that the actual applied
control is 251 -1 since this gives the same transition probabilities
as the rundom control. In general, the average cost of fuel at state i
is |2p;-1|. Define M, M, as the My 55
and w = -1, resp. Then, the average fuel used is

where j corresponds to u = +1

. = . = s
(iv): F = % N Milai

and, we can optimize with constraint F = &, The constraint (iv) can be
put into a linear form by the introduction of suitable suxiliary variables as

follows: Minimize 2. (MI + M;)ai with the constraints (6) and Vi - w1 -
3
+ - i - %

M{ - M; and V" 20, W 20, and

Z (Vi + Wi)ai s 6.
i

(See [7], Sec. 5.3 for a similar substitution,)

{
]

TR N = e
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Example Continued: Numerical Result, Let h = «29, 02 = 2, Then

for the region of Fig, 2, we will have N = 195 states, including the 5> tar-
get states, The k(x) on the outer boundary nodes are 1,5 of what their
values would be were the node not on a boundary, and we let the piJ(u) be
independent of u, for 1 on the upper and lower boundary. u, (Eqn, (6))
equals one for the [} marked state in Fig, 2. Note that the immediate
effects of the control u are on the vertical movement only., The control
values (2 1) for the minimum average time problem are given in Fig. 3.
Denote T* = minimum average time = minimum average fuel, Figs, 4 and 5,
plot the control values for & = ,9T* and .757*, resp., and indicate the
expected decrease of control effort on the counter clockwise side of the
switching curve as © decreases,

Note that the control value wu =0 is singular (see also the
end subsection of the paper) in that either the right side of (23) is mini-
mized (for this example) at Qg = ¥ 1, or else it does not vary as «a varies
in [-1, +41]y i.e., if the optimal control for sta*e 1 1is zero, it can
never be determined by minimizing the right side of (23), as it could if there
were no side constraints, The example also emphasizes the relationship be-

tween singularity ard randomness of a control.

% The L, P. Form of the Finite Time Problem,

Consider the dynamic programming problem (P3): minimize, for

eaCh i = l,ooo,N,
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By

i

oMB

k( )S-" “(xn))

Where M= (uo, ul’ooo’ un-l)

is a sequence of control vectors, u1 being
used at time n-i, (P5) is equivalent to the following L.P, problem., Let

yij(m) - P[xm . i, u(&n) s a.j}. Minimize

n N
(26) z = 2 g 2, yij(m)k(i,oa)
m=0 j=1 i=1l

with constraints (the Chapman-Kolmogorov equation)

y;(0) EJZyij(o) = W, 1=1...,N, yy;(m) 20

(27)
yy(m+l) = Zyij(m+l) T ykz(m)pki(az), me=0,1,.,,0-1;

J Ly k
where all u >0 and  # uy = 1. We will write the L.P. eqns. for the more
general problem (P4): minimize (26) with constraint (27), for any M, 20

and the inequality constraints

(28) Z' aij(m)yij(m) 8, m=0,...,0

i,J
(28) includes only one constraint for each time m, but the general case is
Just as simple,.

Define the row vectors with q components




27

~

s taeist)
pij - (pij(al)’ ""pij(aq))
K(1) = (K(1,0), 000, K(4,0))

ai(m) » (ail(m))"')aiq(m))
and the column vectors (with q and Nq components, resp,)

yi(m) s (yil(m)’ . ")yiq(m))

y(m) = (yy(m),e.0,yy(m)).

Then the simplex tableau can be written in the form of Fig. 3.

Let the column vector C(m) = (Cl(m),...,CN(m)) be the dual
vector to the mth group of equations in Figure 3. The dual of (P4) is:

maximize
n

(29) ¢ -LC, 5 ¢
0

with the constraints

Ci(n) H Cna'il(n)’ L = l)""q

(30) N
Cy(m-1) = JE.lpij(az)cj(m) + k(i,ap) + Em-laiz(m-l)

all i,m, 4.
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In the absense of the inequality constraints (28), the system (30) is simply
the dynamic programming equation. (20) can be put into a more convenient
vector form as follows, Let w = (ai yeees @y ) be an arbitrary control.

1 N

Define the column vectors

K(w) = (k( 1’a11)”"’k(N’a1N))
a(wm) = (alil(m)""’aNiN(m))°

Then (31) is equivalent to (30).

¢(n) = C_a(vyn)
(31)
C(m-1) = R(W)C(m) + K(¥) + € a(w;m-1)

for all control vectors .

4, A Maximum Principle for Markov Chains.

The linear programming formulation treats the control and state
simultaneously, in that the MiJ or y,;y ere the free variables. Next,

by a direct application of the deterministic discrete time maximum principle,

a form of stochastic maximum pringiple for the fixed finite time Markov

problem will be derived, in which the control and state are treated analog-

ously to their treatment in the deterministic problem.

Define p&n) =H X, = i}. The probabilities pgn) will be the
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dynamical variables. Again U = (al,...,aq), and « suppose that the con-

trol variables are the probabilities

a?J = Plu(x ) = ajlxn =1},

Indeed, whether or not the solution is a pure control, it is (once more)
only by allowing randomization that the discrete maximum principle will be
appliceble, Define the vectors Bz - (Bgl,...,ng) and Bn = (B?,...,Bg).
p" takes the place of the u = (ul,...,uN) of the dynamic programming
problem (and the y of the L.P, problem), Let R(B™) = {piJ(BT);

i,j = 1,...,N)}) denote the matrix of transition probabilities (with state

0 deleted) under the random rule Bm; i.e.,
v, (B]) = L p, .(a,)B],.
gy AT
Define the (N) column vector K(Bm) - (k(l,BT),...,k(N,B:)) where
k(i,B]) = § k(1,a,)BY,.

The problem to be treated is (P5), a slight extension of (Pk4),

The dynamics are

(32) p(m+l) = R.(Bm)p(m) = [R'(ﬁm)p(m)-p(m)] - p(m)

m2(0™,6% + o™ nao,1,...,00
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The cost is
n
(})) zZ = z Z k(i’aj)pg_m)BTJ = ZK'(Bm).p(m)’
m=0 i,] m
with constraints
0) _ 3 (n)
Gop( shy O "o %;
(34) .
Qip( ) s 61‘” -O’,,.’n’

e

where G,, G, and the Q, are matrices of full rank, and ab, 5, and B

are suitable vectors, Define pgm) by ;éP) =0 and

Pénnl) - Pém) + fo(p(m),ﬁm) = p(()m)-o-l('(am)p(m)
Then pén) = 2z,
Observe that the set

#(p(™) g™

m) .m
is convex in the control vector ﬂm. It is easy to see that the conditions
of the discrete maximum principle hold for the set (33) - (34) (see

[T, Chapter u],and note that we change some signs here in order to bring

the result in closer conformity with dynamic programming usage). A girect

transcription of this discrete maximum principle yields
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Theorem 5, Let ﬁo,...,gn-l and P

state, resp, Then there are costate vectors m(0),...,7(n), and vectors

(o) (n)

yeeesp' ™ be the optimal control and

).1 20 (all components me non-negative) , and vectors 'iO’ i'n and a scalar

7 2 0. (Not all the m°, m(0),...,m(n), 'io, X, arc zero.) The (i)

satisfy the adjoint equation

(358)  m(m) = m(mel) + [(R(E™)-TIm(med) + mOk(EY) + @,

me= 0,000’n-l

and the transversalitl conditiqgg

(%5b) m(0) = Géxo' m(n) = G:ﬁn + QA
and
(35¢) xl'n(om’ﬁ(m) -8) =0, m=0,...,0

Lefine the Hamiltonian

H(p'™, 6™ 7,7%,m) = 7% (BN ™ + w0 2(p(™, 6D,

Then

(36) H( émZEmﬂr( m+1), m%,m) = H( @’Bm’w(m*l) 9"°’m)
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for all ai, or equivalently,

(37) (3 ) [R(E®T(ne1) + TOK(E™))

s D [R(E™)m(me1) + TOK(E™ 1.

In terms of components (37) is

(57a) B szij(é’pwj(mu) + 1°(1,B})] foi“)[)j: Py 5 (BT (me1) #1%(1,87))

Remark. It can bc shown that 7° >0; thus we can set 7° = 1. Let G, = I,
Then o = 4 a vector of given initial probabilities. ©Suppose that the

0
other constraints of (34) are absent, Then, m(i) 4is the optimal dynamic

programming cost vector, with n-i steps to go, and (35a) and (37) com-

bine into

m(m) = R(E™)m(m+l) + K(B™) =

R(E™)m(m+l) + K(E™), m(n) =0, m =0,1,...,n-1,

which is precisely the dynamic programming equation (3).

Remark on Singular Controls. The set (py (By), i = 1,...,N, k(1,p))

is a convex polyhedron, as Bi varies over its admissible values. Thus,

the minim:.: of the r.h.s. of (37) lies on a vertex of the polyhedron - or,

if the minimum falls on more than one vertiex, it also falls

in the convex hull of the set of vertices on which the minimum occurs. Con-
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sider the example (a typical discrete problem derived from a continuous time
problem which is linear in the control). 1In that case there are at most
two extreme points to the polyhedron and p, J(fs"") has the form e’l"p“(u) +
(1-5‘1‘)pij(-.1), and k(1,B]) = k(i) and we can write the r.h.s. of (37a)

as

S T o (6P (med) + k(1))
Py [3.1p13(6i 7i(m+l) +

_ ol b _ all.- & -
= fyd;(m+l) Bidi(m+l) + eij(m+l) ,d; 20, a7 20,

and the minimizing BT satisfies

m - +
By = & 12 di(m+l) 2 di(m+l)

=0 if d;(m+l) > a7 (m+1)

= ? otherwicse,

However, we have seen in past sections that, in the presense of
*state variable' constraints (34) (except Gop(o) ==%%), the control may be
random for some times r and states i. Thus, with these state variable
constraints, the control may well be singular; i.e., dI(m+l) = d;(m+l),
and the m.ximum principle yields no information directly, in analogy to the
state variable constrained deterministic case. Existing works (e.g. [10],
on continuous time stochastic maximum principles - dealing with ter-

minal time 'average' constraints g(ExT) = 0 have not adequately accounted

for the poscibility of randomization. It would also be worthwhile to study



methods for extracting information from the stochastic Hamiltoniar formula-
tion in the singular situation, One of the advantages of our study of
the simple Markov chain problem, is that the singular - and randomization -

problems are made quite apparent, a situation not easily seen from the con-

tinuous time formulations.
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